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1 .  Introduction 

Consider a program that is to be executed on a multiprocessor 

containing N identical processors. 

be equipped with one or more array processors attached for its private 

use. 

Each of these processors may itself 

Amdahl's law [1,2] estimates an upper bound of N/log N for the 2 

actual speed-up, or ratio of elapsed time with a single processor to the 

elapsed execution time with N processors. Recent experiments [ 3 ]  have 

shown that this may be an unnecessarily pessimistic estimate of speed-up 

and that values close to N may be obtained for specific applications. 

We have recently derived another approach to computing the estimat- 

ed maximum speed-up [4], assuming an unlimited number of processors, 

based on a model which considers the density p of precedence relations 

between tasks in programs. We obtain [4] an approximate formula 

(1 + p)/2p for the maximum speed-up, on the average, for such a family 

of programs assuming that the number of processors available is unlimit- 

ed. When p is close to 1, nearly all tasks are interdependent and the 

programs will in fact execute sequentially; the speed-up factor itself 

will be close to just 1 .  On the other hand, when p is very close to 0 

we are dealing with programs composed of many quasi-independent tasks 

and the maximum speed-up is very large. An "infinite" speed-up merely 

means that the average execution time for the program family remains 

nearly constant as the number of individual tasks in the program becomes 

very large. 

In this paper we shall begin by considering Amdahl's law and suggest 

some modifications or amendments that can serve to explain speed-up 

factors which are nearly linear in the number of processors. We shall 
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then return to the intrinsic processor independent behavior of parallel 

programs and introduce a new model of parallel program behavior, the 

Activity Set Model,' which may be used to describe the behavior of 

parallel programs and to derive bounds to the speed-up which can be 

expected when such programs are execdted or multiprocessors. 

We first consider a simple amendment to Amdahl's law, and derive a 

speed-up fotmula with N processors which is of the form 

N 
[ ( l  - € ) ( 1  + 6) + E log2N] 

where E is the probability that the programs cannot effectively use N 

processors. 6 i s  a measure of the unbalance between the workloads of 

each processor when N processors are used. Indeed, 6 / N  is the amount of 

time in excess of the optimistic equal run-time 1 / N  which the most loaded 

processor will take to run the task that has been assigned to it. Thus, 

when the computation has been organized so that E is very small, the 

speed-up can be as high as N / ( 1  + 6). These results are detailed in 

Section 2. 

In Section 3 ,  we consider an evaluation of speed-up based on 

intrinsic program behavior which leads to general bounds. 

Throughout the discussion we consider a program, or a family of 

programs, whose average run-time on a single processor is equal to 1 .  

'The name of this model is, of course, inspired by Peter Denning's 
Working Set Model used in paging. 
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2 .  Amendment t o  Amdahl's Law 

Assume t h a t  t h e  program, o r  family of programs, considered makes 

f u l l  use of t h e  N processo r s  w i th  p r o b a b i l i t y  ( 1  - E ) .  I t  w i l l  use only 

i p rocesso r s  (1  5 i S N - 1 )  wi th  p r o b a b i l i t y  c i ,  where 

N- 1 

1 
E =  2 E i  

If it uses  N p rocesso r s ,  one of t h e s e  w i l l  have t h e  g r e a t e s t  work- 

load so t h a t  t h e  run-time o f  t h e  program on N processo r s  i s  given by 

t h e  t i m e  e l apsed  f o r  t h e  most heav i ly  loaded one, o r  

1 6  
N N  
- + -  

Obviously, i f  a l l  t h e  p rocesso r s '  workload were p e r f e c t l y  balanced,  

t h e  e l apsed  time would be simply 1 / N .  

S i m i l a r l y ,  when only i p rocesso r s  a r e  used t h e  elapsed t i m e  w i l l  be 

i 1 - + -  
i 1 

6 

These t i m e s  should be viewed a s  average va lues  when a family of 

programs i s  considered.  

Thus, t h e  average elapsed time when N processo r s  a r e  a v a i l a b l e  i s  

given by t h e  formula 

So t h e  speed-up T(l)/T(N) = 1/T(N) i s  simply given by 
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N 
6 S =  N-1 

1 
[ ( l  - ~ ) ( 1  + 6) f N 2 + 

The Most Favorable Case 

Naturally, the greatest speed-up will be obtained if we set 

= E ,  E 

We then have for large enough N: 

= 0 for 1 S i 5 N - 2.  N- 1 i E 

,N 
1 + 6(1  - E)  + bN-l S z :  

This formltla expiains the quasi-linear speed-ups that can be 

encountered for some specific applications. 

The Least Favorable Case: Amdahl's Law 

We consider that the least favorable case for a family of programs 

is obtained by setting 

= 1 - E 1/N, for  all 1 5  i 5 N - 1 'i 

which implies that we are equally likely to make use of any number of 

processors less than N; this is the assumption made in Amdahl's law. 

then have 

We 

6N = 6 N 
N 6i' S =  

Z . + Z -  N 1  

N l  Since 2 - 2 log2N, we have i 1 

(3)  



Amendment to Amdahl's Law 

Let us consider a family of programs that can fully use all N 

processors with probability 1 - E .  If a program in this family cannot 

make full use of them, then assume that it is equally likely to use 

N - 1, N - 2, ... or just one processor. We then have E = &/N-1, 

1 6 i 2 N - 1, so that we obtain 
i 

N 
N-1 6i s 5  

EN 
N- 1 [(l - &)(1 + 6) + -(log2(N - 1) + 2 i)] 

1 

For large N, this bound becomes 

N 
(1 - E ) ( 1  + 6) + E log2N 

s s  

which is a useful compromise between the unnecessarily pessimistic form 

of Amdahl's Law, and the overly optimistic linear bound. 

In ( 6 )  program characteristics appear via the parameters E and 6 ,  

where E is the probability that a program is unable to make use of a l l  N 

processors, while 6 measures the imbalance between the average execution 

time of  parallel tasks. In the sequel we shall consider a simple 

representation o f  a parallel program's execution in virtual time. 

3 .  The Activity Set Model of Parallel Program Behavior 

Consider a program that is being executed with an unlimited number 

of processors. 

representing the number of active processes o r  tasks at some instant t, 

lying between the instant t = 0 when the program execution is initiated 

Its behavior may be characterized by a variable n(t) 
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and the instant t = T when it ends. Such a behavior is shown in 

Figure 1. n(t) is the size of the Activity Set at time t. 

40 

20 

10 

n(t) 
Size of the Activity Set 

- N  

t 
2 

(Virtual Time) 

Figure 1 .  
of virtual time t, between t = 0 when the program execution begins and 
t = T when it ends. 

Size of the Activity Set of a parallel program as a function 

The total work 

W = JTn(t)dt 
0 

(7) 

represents the amount of computational effort that must be accomplished 

by any set of processors in order to execute the program. 

The Activity Set of the program at time t is the set of parallel 

processes or tasks that are running simultaneously at time t. 
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The parallelism index No: 

1 T  N = - J- n(t)dt = W/T 
O T o  

is the average number of active processes in the program, or the average 

number of processors that it can use simultaneously. 

Time t in the expressions above should be considered to be virtual 

time, or program execution time from which the time spent for all 

interruptions (paging, I/O, other programs' execution time, etc.) has 

been deleted. 

If the program is to be run on a single processor whose speed is c 

times faster than any one of the initial set of processors, the program 

will now run sequentially in time 

T(c,l) = W/c = NOT/c (9 1 

If, on the other hand, we are limited to running the program on N 

processors, each of which has the same power as one of the processors in 

the initial unlimited set, we can derive some bounds on the execution 

time. 

Consider the quantity 

C(N) = JT(N - n(t))+dt 
0 

+ + where (x) = x if x L 0 and (x) = 0 if x < 0 .  

C(N) denotes the amount of additional work that N processors could 

provide during the interval [ O , T ] ,  or their excess capacity, when the 

program is executed with an unlimited number of processors. It is shown 

as the shaded area of Figure 1. Similarly, 
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D(N)  = JT(n(t) - N)+dt 
0 

is the work accomplished by the other processors being used when the 

total number of processors available is unlimited. 

When the total number of' processors is liuiited to N, the total 

execution time T(N) cannot be smaller than 

T(N) 2 T + [D(N) - C(N)]+/N 
since in the best case the excess capacity C(N) will be used to 

accommodate as much excess work D(N) as the processors can take. 

Similarly, an upper bound t o  T(N) can be derived by considering 

that all of the work D(N) will be accomplished on the N processors after 

time T: 

T(N) 5 T + D(N)/N 

The speed-up obtained by using N processors instead of a single 

processor (of  speed c = 1) can now be estimated from these bounds. It is 

given by the formula S = T(l)/T(N) so  that 

NOT NOT ' ' T + b(N)/N (D(N)-C(NI )+ 
N T +  

or 



9 

From these inequalities we see quite clearly that S can never 
S exceed N which should be obvious, but also that - is bounded from 

above by the multiplicative factor 
NO 0' 

1 

and from below by the multiplicative factor 

3 . 1  A Statistical Interpretation 

Clearly, the precise behavior of a program as given by the function 

n(t) is in general very difficult to predict since it will obviously be 

data dependent. 

function so that No, D(N)/T, C(N)/T will now have convenient statistical 

interpretations in terms of the statistical average or expected value 

E[*] taken over the finite time interval [O,T]: 

Thus, it is quite natural to treat n(t) as a random 

T + E[(n(t) - N)'] 

We shall now write in particular 

S 1 - >  
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3 . 2  A Numerical Example 

Within the framework of the statistical interpretation of n(t), 

consider the case where it is time independent and its distribution 

function is geometric over the interval [ O , T ] :  

This example describes a situation in which the program is always more 

likely to have a smaller number of active parallel tasks. 

must be choser! so that E[n(t)] = No, hence No = 1/ (1  - q) or 

q = (No - l)/No. 

Clearly, q 

We then have 

a0 
i- 1 

E[(n(t) - N]'] = Z (i - N)q (1  - q) 
i=N 

'IN. No N No - 
NO 

= 4 /(I - q)  = (- 

Hence 

S 1 
No No-I 

1 + -(- jN 
No 

On Figure 2 we show the lower bound (13) to the speed-up S as a 

function of the number of processors N for various values of No (the 

parallelism index). 
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Lower bound to S 

N = 20 0 N = 20 0 

N = 10 0 

N = 5  0 

> N  

N = 10 0 

N = 5  0 

> N  
5 10 15 20 

Figure 2. The lower bound for the speed-up S as a function of N for 
various values of N provided by equation (13). 0 

4 .  Conclusions 

In this note we have considered some amendments to Amdahl's law 

which take into account the fact the programs may be able to make effec- 

tive use of all of the processors which are available to them, but which 

also recognize the fact that imbalance in the partition of the workload 

between processors reduces the speed-up one could expect. 

We have then suggested examining the speed-up issue in terms of a 

representation of the intrinsic behavior of parallel program execution 

which we call the Activity Set Model. This model describes the set of 

simultaneously active parallel processes as a function of program virtual 

time. We show how the size of the Activity Set can be used to derive 
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bounds on the  speed-up of the program a s  a function of the number of 

processors  which are a v a i l a b l e  to i t .  
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